К вопросу о строении активных центров полимеризации бутадиена под действием каталитических систем.

Рис. Схематическое изображение изомерных структур моделей активных центов (I), числами со знаками указаны электронные заряды, расстояния между атомами указаны в A. Атомы Н не обозначены.

а) Модель анти-структуры активного центра, характеризующая p-аллильное связывание концевого звена с атомом неодима;

б) Модель син-структуры активного центра, характеризующая p-аллильное связывание концевого звена с атомом неодима;

в) Модель структуры активного центра с локализованной sa-связью Nd-Ca при транс-конформации концевого звена;

г) Модель структуры активного центра с локализованной sa-связью Nd-Ca при цис-конформации концевого звена;

д) Модель структуры активного центра с локализованной sg-связью Nd-Cg концевого звена с атомом неодима.

Самой отличительной чертой исследованных моделей является то, что для биметаллических центров I и II энергетически выгодной (по величине полной электронной энергии) является делокализованная структура (рис. а и б) концевого звена растущей полимерной цепи, связанной с атомом Nd, в то время как для монометаллических центров III и IV (структура аналогичная рис. в и г) энергетически выгоднее оказывается локализованная структура. Так, например, *(анти-)-структура биметаллического центра I является энергетически выгоднее sa-цис-структуры на 42.4 кДж/моль, а sa-транс-структура центра III на 16.3 кДж/моль выгоднее p(син-)-структуры. Анализ показывает, что такой эффект может быть обусловлен действием двух факторов. Во-первых, наличие в биметаллических центрах I и II атомов Cl, являющихся электроноакцепторами, способствует (в соответствии с теорией ps-переходов [11]) p-связыванию концевого звена растущей полимерной цепи с атомом лантанида, в отличие от монометаллических центров III и IV, в которых атомы галогенов отсутствуют. Во-вторых, для монометаллических центров энергетически предпочтительной является пирамидальная структура, согласующаяся с известным фактом о том, что большинство малых молекул, например, тригалогениды LnX3 имеют в газовой фазе пирамидальное строение [12]. Для биметаллических центров наличие мостиковой связи создает стерические затруднения для пирамидальной структуры, вследствие чего энергетически выгодной является структура, близкая к октаэдрической. В свою очередь, октаэдрическое строение благоприятствует (с учетом симметрии валентных молекулярных орбиталей, участвующих во взаимодействии) p-связыванию концевого звена с атомом Nd. В итоге для структур I и II p-аллильное связывание оказывается предпочтительнее s-связывания. Для монометаллического центра предпочтительной оказывается пирамидальная структура, в которой молекулярная орбиталь лантанида имеет симметрию, позволяющую ей участвовать только во взаимодействии с заполненной молекулярной орбиталью аллила. Вследствие этого предпочтительной оказывается s-связывание концевого звена с атомом Nd. При этом перевод монометаллического центра в октаэдрическое строение приводит к тому, что p-связывание концевого звена с атомом лантанида становится энергетически выгоднее s-связывания на 43.1 кДж/моль, однако полная энергия соединения в целом повышается на 53.3 кДж/моль, что делает этот процесс энергетически невыгодным. Было также найдено, что как для биметаллических I и II, так и для монометаллических III и IV центров предпоследняя двойная связь полимерной цепи координируется на атоме лантанида независимо от того, какую связь (p- или s-) образует с атомом Nd концевое звено полимерной цепи. При этом электронное строение центра (т.е. заряды на атоме Nd и заселенности связей Nd-углерод) фактически не зависит от того, сколько концевых звеньев учитывается при моделировании полимерной цепи (табл.). Отметим, что при координации двойной связи третьего звена полимерной цепи на атоме Nd энергия комплексообразования чуть выше (на 3 кДж/моль для биметаллического центра и на 7 кДж/моль для монометаллического), чем при координации второго звена. Последнее связано с возможностью более удобного расположения (по чисто стерическим причинам) двойной связи относительно атома Nd при координации третьего звена. Ранее нами был предложен механизм стереорегулирования, основанный на сравнении времени жизни активных центров в s-аллильном состоянии, допускающем внедрение мономера, и времени протекания элементарного акта реакции роста [6]. Было показано, что цис- стереоспецифичность возникает, когда для активных центров характерна значительная p-аллильная стабилизация (имеется ввиду p-аллильное связывание концевого звена) и вследствие этого времени жизни центров в s-состоянии не хватает для протекания реакции внедрения мономера. Фактором, обусловливающим цис-стереоспецифичность, является то, что в этом случае при взаимодействии с p-аллильным центром атакующий диен (первоначально находящийся в трансоидной конформации) вынужден изомеризоваться в цисоидную конформацию, поскольку только цисоидные конформеры могут в такой ситуации одновременно и стабилизировать s-структуру центра (возникающую вследствиеp-s-переходов), и внедряться по s-связи металл-углерод [2]. Естественно, что для биметаллических центров (в которых энергетически предпочтительным является p-аллильное связывание концевого звена с атомом лантанида) в рамках данного механизма следует ожидать проявления цис-стереоспецифичности действия, что и подтверждается экспериментально [2]. Для монометаллических центров, в связи с энергетическим преимуществом s-структуры, следует ожидать, что времени жизни центра в s-состоянии должно хватать для протекания реакции внедрения (реакции роста). В этом случае никаких дополнительных требований к конформации диена не возникает, и молекула бутадиена внедряется в трансоидной конформации, которая для нее является основной в растворе. Последнее и объясняет транс-регулирующую способность центров типа LnR2Р (где Р - растущая полимерная цепь). Таким образом, для биметаллических центров в лантанидных каталитических системах характерно p-аллильное связывание концевых звеньев растущих полимерных цепей с атомом лантанида, в то время как для монометаллических центров свойственно s-алкильное связывание. Работа выполнена при финансовой поддержке РФФИ (грант № 99-03-33437), гранта "Ведущие научные школы" (грант № 00-15-97322) и АН РБ (договор №4/2 по ГНТП "Катализаторы, химические технологии и материалы").

Перейти на страницу:
1 2 3

Длинношеее животное. Жирафы
Жирафы относятся к семейству жирафовых и являются полноправными обитателями травянистых и лесистых саванн, раскинувшихся почти по всей Африке к югу от Сахары. Характерный признак жирафа ...

Королевские кошки
"Королевские" кошки Белоснежных кошек породы турецкая ангора часто называют королевскими - за аристократизм и независимость. И не случайно. Среди самых известных владельцев этих ...

Основы селекции
Основы селекции Селекцией (лат. selectio отбор) называют комплексную биологическую дисциплину, направленную на выведение сортов растений, пород животных и штаммов микроорганизмов с нужны ...