К вопросу о металлической связи в плотнейших упаковках химических элементов

Внешние электроны последней оболочки или подоболочек атома металла образуют зону проводимости. Число электронов в зоне проводимости влияет на постоянную Холла, коэффициент всестороннего сжатия и т.д.

Построим модель металла-элемента так, чтобы оставшиеся, после заполнения зоны проводимости, внешние электроны последней оболочки или подоболочек атомного остова неким образом влияли на строение кристаллической структуры (например: для ОЦК решетки-8 "валентных" электронов остова, а для ГЕК и ГЦК -12 или 9).

Очевидно, что для подтверждения нашей модели необходимо сравнить экспериментальные и теоретические данные по Холлу, коэффициенту всестороннего сжатия и т.д.

Грубое, качественное определение количества электронов в зоне проводимости металла - элемента. объяснение факторов, влияющих на образование типа решетки монокристалла и на знак постоянной холла.

(Алгоритм построения модели)

Измерения поля Холла позволяют определить знак носителей заряда в зоне проводимости. Одна из замечательных особенностей эффекта Холла заключается, однако, в том, что в некоторых металлах коэффициент Холла положителен, и поэтому носители в них должны, видимо, иметь заряд, противоположный заряду электрона /1/. При комнатной температуре это относится к следующим металлам:: ванадий, хром, марганец, железо, кобальт, цинк, цирконий, ниобий, молибден, рутений, родий, кадмий, церий, празеодим, неодим, иттербий, гафний, тантал, вольфрам, рений, иридий, таллий, свинец /2/. Решение этой загадки должна дать полная квантовомеханическая теория твердого тела.

Примерно, как для некоторых случаев применения граничных условий Борна-Кармана, рассмотрим сильно упрощенный одномерный случай зоны проводимости. Вариант первый: тонкая замкнутая трубка, полностью заполненная электронами кроме одного. Диаметр электрона примерно равен диаметру трубки. При таком заполнении зоны, при локальном передвижении электрона, наблюдается противоположное движение "места" незаполнившего трубку, электрона, то есть движение неотрицательного заряда. Вариант второй: в трубке один электрон - возможно движение только одного заряда - отрицательно заряженного электрона. Из этих двух крайних вариантов видно, что знак носителей, определяемых по коэффициенту Холла, в какой-то степени, должен зависеть от наполнения зоны проводимости электронами.

На порядок движения электронов также будут накладывать свои условия и структура зоны проводимости, и температура, и примеси, дефекты, а для магнитных материалов и рассеяние на магнитных квазичастицах - магнонах.

Так как рассуждения наши грубые, учитываем в дальнейшем пока только наполнение зоны проводимости электронами. Заполним зону проводимости электронами так, чтобы внешние электроны атомных остовов оказывали влияние на образование типа кристаллизационной решетки. Предположим, что число внешних электронов на последней оболочке атомного остова, после заполнения зоны проводимости, равно числу атомов соседей (координационному числу) /5/. Координационные числа ГЕК, ГЦК (гексагональной и гранецентрированной) плотнейших упаковок 12 и 18, а объемноцентрированной решетки (ОЦК)8и14/3/. Для ГЕК и ГЦК рассмотрим также число 9!

Построим таблицу с учетом вышеизложенного. Температура комнатная .

Элемент

 

RH . 1010 (м3/K)

Z. (шт.)

Z остов. (шт.)

Тип решетки

Натрий

Na

-2,30

1

8

ОЦК

Магний

Mg

-0,90

1

9

ГЕК

Алюминий или

Al

-0,38

2

9

ГЦК

Алюминий

Al

-0,38

1

12

ГЦК

Калий

K

-4,20

1

8

ОЦК

Кальций

Ca

-1,78

1

9

ГЦК

Кальций

Ca

T=737K

2

8

ОЦК

Скандий или

Sc

-0,67

2

9

ГЕК

Скандий

Sc

-0,67

1

18

ГЕК

Титан

Ti

-2,40

1

9

ГЕК

Титан

Ti

-2,40

3

9

ГЕК

Титан

Ti

T=1158K

4

8

ОЦК

Ванадий

V

+0,76

5

8

ОЦК

Хром

Cr

+3,63

6

8

ОЦК

Железо или

Fe

+8,00

8

8

ОЦК

Железо

Fe

+8,00

2

14

ОЦК

Железо или

Fe

Т=1189K

7

9

ГЦК

Железо

Fe

Т=1189K

4

12

ГЦК

Кобальт или

Co

+3,60

8

9

ГЕК

Кобальт

Co

+3,60

5

12

ГЕК

Никель

Ni

-0,60

1

9

ГЦК

Медь или

Cu

-0,52

1

18

ГЦК

Медь

Cu

-0,52

2

9

ГЦК

Цинк или

Zn

+0,90

2

18

ГЕК

Цинк

Zn

+0,90

3

9

ГЕК

Рубидий

Rb

-5,90

1

8

ОЦК

Итрий

Y

-1,25

2

9

ГЕК

Цирконий

Zr

+0,21

3

9

ГЕК

Цирконий

Zr

Т=1135К

4

8

ОЦК

Ниобий

Nb

+0,72

5

8

ОЦК

Молибден

Mo

+1,91

6

8

ОЦК

Рутений

Ru

+22

7

9

ГЕК

Родий или

Rh

+0,48

5

12

ГЦК

Родий

Rh

+0,48

8

9

ГЦК

Палладий

Pd

-6,80

1

9

ГЦК

Серебро или

Ag

-0,90

1

18

ГЦК

Серебро

Ag

-0,90

2

9

ГЦК

Кадмий или

Cd

+0,67

2

18

ГЕК

Кадмий

Cd

+0,67

3

9

ГЕК

Цезий

Cs

-7,80

1

8

ОЦК

Лантан

La

-0,80

2

9

ГЕК

Церий или

Ce

+1,92

3

9

ГЦК

Церий

Ce

+1,92

1

9

ГЦК

Празеодим или

Pr

+0,71

4

9

ГЕК

Празеодим

Pr

+0,71

1

9

ГЕК

Неодим или

Nd

+0,97

5

9

ГЕК

Неодим

Nd

+0,97

1

9

ГЕК

Гадолиний

Gd

-0,95

2

9

ГЕК

Гадолиний

Gd

T=1533K

3

8

ОЦК

Тербий

Tb

-4,30

1

9

ГЕК

Тербий

Tb

Т=1560К

2

8

ОЦК

Диспрозий

Dy

-2,70

1

9

ГЕК

Диспрозий

Dy

Т=1657К

2

8

ОЦК

Эрбий

Er

-0,341

1

9

ГЕК

Тулий

Tu

-1,80

1

9

ГЕК

Иттербий или

Yb

+3,77

3

9

ГЦК

Иттербий

Yb

+3,77

1

9

ГЦК

Лютеций

Lu

-0,535

2

9

ГЕК

Гафний

Hf

+0,43

3

9

ГЕК

Гафний

Hf

Т=2050К

4

8

ОЦК

Тантал

Ta

+0,98

5

8

ОЦК

Вольфрам

W

+0,856

6

8

ОЦК

Рений

Re

+3,15

6

9

ГЕК

Осмий

Os

<0

4

12

ГЕК

Иридий

Ir

+3,18

5

12

ГЦК

Платина

Pt

-0,194

1

9

ГЦК

Золото или

Au

-0,69

1

18

ГЦК

Золото

Au

-0,69

2

9

ГЦК

Таллий или

Tl

+0,24

3

18

ГЕК

Таллий

Tl

+0,24

4

9

ГЕК

Свинец

Pb

+0,09

4

18

ГЦК

Свинец

Pb

+0,09

5

9

ГЦК

Перейти на страницу:
1 2 3 4 5

Оксиды. Кислоты. Основания. Амфотерность. Соли
Оксиды. Кислоты. Основания. Амфотерность. Соли. ...

Земноводные. Социальный поведенческий комплекс
Существует еще один вид сложного поведения животных – это социальное (внутривидовое и межвидовое) поведение. Несмотря на то, что земноводным в основном свойственен «индивидуализм», для опре ...

В мире насекомых. Возможности существования
Все в мире насекомых удивительно – и разнообразие видов, и гигантская численность, и образ жизни, и непостижимое по сложности и целесообразности строение организмов, и порой необъяснимое по ...