Изменение жиров при хранении

Современные представления о механизме окисления жиров.

При неблагоприятных условиях хранения в жирах протекают различные процессы, отрицательно влияющие на их пищевые качества.

Большинство изменений жиров наступает в результате гидролитических и окислительных процессов.

Гидролитические процессы в жирах протекают под влиянием Н2О и фермента липазы, которая содержится в жирах, а также появляется в результате жизнедеятельности микроорганизмов, развивающихся в жире. Процесс гидролиза идет ступенчато, т.е. сначала триглицирид переходит в диглицирид, затем моноглицирид. При распаде моноглицирида образуются глицерин и свободные жирные кислоты.

СН2 ОСОR CH2OH CH2OH CH2OH

CHOCOR + H2O CHOCOR1 CHOCOR1 + H2O CHOH+ECOOH

CHOCOR2 CHOCOR2 CH2OCOR2 CH2OCOR2

диглицирид моноглицирид

СН2 СН2ОН или в общем виде

СНОН + Н2О СНOН+RСООН СН2 ОСОR

CH2OCOR2 CH2OH CHO .

CH2OH

Процесс гидролиза значительно ускоряется в присутствии щелочей, но при этом появляются свободные жирные кислоты, а их соли, которые называются мылом.

СH2OCOR CH2OH

CHOCOR1 + 3 NaOH CHOH + 3RCOONa

CH2OOR2 CH2OH

Свободные жирные кислоты отрицательно влияют на количество жира, особенно, если образуют низкомолекулярный (уксус, масло, валериана), появляется неприятный вкус и запах. По количеству свободных жирных кислот судят о свежести жира по такому показателю, как к. г. жира.

Окислительные процессы — это глубокий распад с образованием перекисей альдегида, кетона, оксикислот и др. Жиры, вследствие особенностей их химической структуры, легко подвергаются автокислению молекулярным О2. Согласно теории Н. Н. Семенова, этот процесс осуществляется по пути медленно развивающихся разветвленных цепных реакций. Идет по следующей схеме зараж. RT

1) RH + O2 — R + O’ OН

св.ж. перек. R

Наиболее трудно протекает образование первого свободного радикала, поскольку оно требует значительной энергии для разрыва связей между атомами молекулы. Далее процесс окисления все усиливается и в него постепенно вовлекается огромное количество молекул. Чем больше ненасыщенных связей в жировых кислотах, тем быстрее она подвергается окислению. Например, линолевая кислота подвергается в 10-12 раз быстрее, чем онеиновая. Насыщенные кислоты окисляются намного медленнее, но тоже могут переходить в гидроперекиси. Глубина и скорость окислительных процессов находятся в прямой зависимости от количества входящих в жиры глициридов полипептидных ж.к., а также от интенсивности соприкосновения жира с воздухом от температуры.

2 этап: продолжение цепи: О2 - вступает во взаимодействие со св. × R1.

R1 + O2 ® ROO1 - обр. перекисгесный радикал, который обладает сильными окислительными свойствами, поэтому он может вступать во взаимодействие с неокисленной молекулой , отнимая H там, где связь слабая.

3 этап: RH + ROO ® ROOH + R1- гидроперекиси нестойкие соединения, она разрушается с образованием двух новых радикалов.

ROOH + RO1 + OH1, которые открывают атом Н от окисляемого органического вещества RH, создавая радикал R1. Этот радикал начинает цепную реакцию по ранее указанной схеме. Процесс идет непрерывно до момента разрыва цепи в результате возникновения менее активного радикала, который не вступает в реакцию с молекулой исходного окисляющегося вещества. Указываемое явление наблюдается при использовании различных замедлителей процесса окисления, которые могут вызвать обрыв цепи. Этот процесс рекомбинаклей, т. е. объединение радикалов, в результате образуются недеятельные соединения:

1) R1 R1® R - R R1 + ROO1 ® ROOR

ROO1 + ROO ® ROOOOR

О начале и глубине окисления судят по перекисному числу. Перекисное число принято выражать в % 2. В свежем жире перекиси отсутствуют или их уровень редко достигает 0,03%. Однако, когда перекисное число превышает 0,03 и содержание перекисей доходит до 0,06, — жир, хотя и не имеет органических изменений, уже не подлежит дальнейшему хранению. Жиры с перекисным числом от 0,06 до 0,1 относят к категории жиров сомнительной свежести, более 1,0 — к категории испорченных.

Гидроперекисные соединения неустойчивые к распадению на кетоны, альдегиды, оксисоединения. Происходит ухудшение органических показателей, порча жиров - прогоркание. Прогоркание жиров может происходит в результате химических или биохимических процессов.

Химическое прогоркание развивается в результате длительного контакта жира с атмосферным воздухом вследствие плохих условий хранения, а биохимическое - в результате загрязнения жира микрофлорой. Для определения глубины химического прогоркания жира в последнее время все чаще используют методы количественного определения карбонильных соединений - альдегиды и кетонов.

Карбонильное число

обозначает карбонильное соединение _ на 1 кг жира. Изменение органических свойств жира более точно определяется карбонильным числом, нежели п.ч. существует и другой вид прогоркания жиров - осаливание. Для осаливания характерно образование значительного количества оксисоединений, которые возникают в результате распада на свету первичных органических перекисей, а также появление окиси и гидроокиси свободных радикалов. Содержание оксигрупп определяют ацетильным числом. Образовавшиеся оксикислоты обеспечивают жиру салистую мазсобразную консистенцию с неприятным специфическим запахом и вкусом. Этот процесс характерен для сливочного топленого масла и маргарина. Поверхность белеет и приобретает запах сала. Процесс автоокисления жиров ускоряется в присутствии виола, света, катализаторов - цинка, свинец, олово, а также - белки, ферменты микроорганизмов.

Перейти на страницу:
1 2

Кинетическая модель механизма компенсированного распада углеводородов на платине
Исследования химии углерода получили в последние годы мощный импульс в связи с открытиями в области материаловедения. А c точки зрения катализа до сих пор остаются актуальными проблемы пони ...

Длинношеее животное. Жирафы
Жирафы относятся к семейству жирафовых и являются полноправными обитателями травянистых и лесистых саванн, раскинувшихся почти по всей Африке к югу от Сахары. Характерный признак жирафа ...

Пластичность мозга
Пластичность мозга ...