Расчет состава смесей с заданным набором свойств

Расчет состава смесей с заданным набором свойств

В химической технологии нередко требуется получать композиции с заданными свойствами, смешивая N однотипных компонентов. При этом массовые или объемные доли компонентов подбирают эмпирически в ходе длительных экспериментов или заранее рассчитывают с учетом свойств каждого компонента. Расчеты возможны только в том случае, когда процесс смешивания протекает аддитивно, то есть без химического или какого-либо иного взаимодействия между компонентами. Состав смеси рассчитать тем труднее, чем большее число свойств смеси надо учесть. Например, для получения бензина с октановым числом (ОЧ) = 92 можно смешивать бензины с ОЧ = 76 и ОЧ = 95, и расчет доли каждого из них (xj) не вызывет затруднений. Подбирая же состав бензиновой смеси по четырем свойствам одновременно, например, добиваясь заданных значений ОЧ, температуры вспышки, плотности и предела выкипания, придется смешивать несколько компонентов, а для точного расчета состава смеси решать систему из 4 линейных уравнений с несколькими неизвестными xj. Предварительный выбор возможных компонентов проводится так, чтобы по единичному свойству одни из них имели бы более высокие, а другие - более низкие значения, чем требуемая смесь. Однако это условие - необходимое, но не достаточное; решения должны отвечать естественным ограничениям, а именно: доля любого компонента должна попадать в интервал (0, 1), а сумма xj должна равняться единице. Рассчитать "идеальный" состав смеси "в лоб", то есть решая систему линейных уравнений, удается редко. Несомненно, для подбора качественного и расчета количественного состава аддитивных смесей перспективно применение ЭВМ. Смеси определенного вида (например, нефтепродукты) могут быть рассчитаны с помощью зарубежных многоцелевых лицензионных программ [1], но нам неизвестны программы, позволяющие решать подобные задачи в общем виде с учетом требуемой точности прогноза.

Целью настоящей работы было создание алгоритма и программного обеспечения для нахождения состава аддитивных смесей со свойствами, с определенной степенью точности соответствующими заданному набору значений ("идеалу"). Такой подход объясняется тем, что в процессе приготовления реальных композиций всегда допускаются небольшие отклонения свойств смеси от желаемых значений, связанные, в частности, с неизбежными погрешностями при измерении свойств смеси. Пределы отклонений указываются в технической документации.

Алгоритм и программа. Допустим, что смесь предполагается составлять из N однотипных компонентов, при этом надо контролировать М свойств, имеющих одинаковую значимость. Обозначим численные значения i-го свойства смеси через Ri, а его идеальное значение через Fi. Те же показатели компонентов, взятых порознь, определяют заранее по стандартной методике или берут их из нормативной документации. Обозначим i-й показатель j-го компонента через Pij. Совокупность всех Pij для однотипных компонентов образует базу данных (БД).

Предположение об аддитивном характере смеси означает, что измеренное значение любого свойства (показателя) смеси равно:

(1)

Пусть Ri -задаваемое пользователем максимально допустимое отклонение i-го показателя смеси от его идеального значения. Будем считать, что допустимые отклонения каждого показателя "вверх" и "вниз" одинаковы, тогда модель аддитивного смешения приводит к системе неравенств и уравнений вида:

(2)

(3)

(4)

Условием существования смеси, отвечающей заданным требованиям, является совместность системы (2)-(4). Для решения этой системы целесообразно применить симплекс-метод [2] с произвольной линейной целевой функцией. В отличие от системы уравнений вида Fi - Pij xj = 0, система (2)-(4), как правило, имеет множество допустимых решений, особенно при больших Ri. Иными словами, приблизительное решение задачи о составе смеси возможно даже в тех случаях, когда точное решение получено быть не может. Приблизительное решение может быть уточнено различными способами, например путем повторных решений системы неравенств при постепенно уменьшающихся значениях Ri. Разумеется, исходная система неравенств может не иметь допустимых решений даже при больших Ri, что указывает на неудачный выбор исходных компонентов смеси, сочетанием которых приготовить смесь с желаемым набором свойств в принципе невозможно. В этом случае следует заменить один из компонентов смеси или ввести дополнительный.

Перейти на страницу:
1 2 3

Химический состав молока
Химический состав молока Химия и физика как наука начала свой отсчет в прошлом веке, в тот период она начинала с изучения химического состава молока. В нашей стране этим вопросом за ...

Длинношеее животное. Жирафы
Жирафы относятся к семейству жирафовых и являются полноправными обитателями травянистых и лесистых саванн, раскинувшихся почти по всей Африке к югу от Сахары. Характерный признак жирафа ...

Земноводные. Социальный поведенческий комплекс
Существует еще один вид сложного поведения животных – это социальное (внутривидовое и межвидовое) поведение. Несмотря на то, что земноводным в основном свойственен «индивидуализм», для опре ...