Компьютерное моделирование комплексометрического титрования с учетом побочных реакций

Входными параметрами являются: начальная концентрация металла (С0), концентрация титранта (СT) и его максимальный объем, начальный объем титруемого раствора (V0) и шаг ввода титранта. Учет побочных реакций требует ввода рН раствора и общей концентрации маскирующего вещества. Логарифмы констант учитываемых равновесий вводятся пользователем вручную либо запрашиваются в банке данных. Основной расчетной процедурой программы является построение интегральной и дифференциальных кривых титрования, то есть функций вида рМ = f(V), dpM/dV = f(V) и d2pM/dV2 = f(V). При этом учитывается разбавление раствора в ходе титрования. Предусмотрены расчет величины pM для любого момента титрования, исследование дифференциальной кривой на наличие экстремумов, получение данных по точкам эквивалентности, скачкам титрования и составу титруемых комплексов. Возможны одновременное построение на экране трех кривых титрования, отличающихся друг от друга по набору входных параметров, и выдача на печать результатов расчета и/или графиков.

На рис.1 показаны полученные компьютером кривые титрования ионов серебра с применением лигандов различной дентатности. Как и следует из теоретических соображений, на кривых проявляются как один (комплексон III), так и несколько (тиосульфат) скачков. ЭВМ прогнозирует, что при введении маскирующих веществ (например, аммиака) должен происходить сдвиг скачка, уменьшение его высоты, исчезновение одного или даже всех скачков (это зависит от относительной устойчивости разных MYi и MRi, а также величины избытка R). Естественно, исчезновение или сдвиг скачка указывают на неприемлемость соответствующих условий анализа.

Так как количественный расчет кривых титрования в подобных случаях упрошенными способами [1-3] провести нельзя, то для проверки правильности работы программы и адекватности выбранной нами модели сопоставляли некоторые кривые, рассчитанные с помощью программы Modelcom, с данными потенциометрического титрования тех же металлов в тех же условиях. Титрование вели при (202)0C, контролируя потенциал серебряного электрода на приборе рН-673 с погрешностью, меньшей 5 мВ, и усредняя данные по 3-5 параллельным опытам. Значения потенциалов переводили в значения pM по предварительно построенному градуировочному графику. Для серебряного электрода электродная функция была строго линейной в области от pAg=0 до pAg=6. Затем строили кривые потенциометрического титрования в координатах рМ = f (V).

Как видно из рис.2, "потенциометрические" кривые в основном совпадают с кривыми титрования, рассчитанными ЭВМ по нашей программе для тех же процессов и тех же условий анализа. Так, в точке эквивалентности при титровании 0,01 М AgNO3 глицином величина рAg оказалaсь: по потенциометрическим данным - 4,2, по результатам компьютерного моделирования - 3,5; соответственно при титровании 0,0010 М AgNO3 комплексоном III - 5,6 и 4,9. Невелики (менее 10%) и расхождения по объему титранта, соответствующему точке эквивалентности. Отмеченные расхождения можно объяснить не только случайными погрешностями эксперимента, но и неточностью взятых из справочника [4] значений констант, а также неполнотой модели. Пренебрежение кинетикой комплексообразования, протонированием комплексов и некоторыми другими эффектами второго порядка при моделировании химических реакций пока представляется неизбежным: в литературе очень мало справочных данных по соответствующим равновесиям и константам скорости.

Очевидно, подтверждение работоспособности программы Modelcom позволяет перейти к применению ее для компьютерной оптимизации реальных методик анализа, а также к использованию этой программы в учебном процессе при изучении студентами университетского курса аналитической химии. Однако эти вопросы требуют отдельного расмотрения.

Рис. 2. Рассчитанные (а) и полученные по потенциометрическим данным (б) кривые комплексонометрического титрования ионов серебра в присутствии аммиака: 1 - без аммиака; 2 - СNHз = 0,0010 М; 3 - СNHз = 0,010 М; СAg = 0,0010 М; VAg = 20 мл; pH 10

Перейти на страницу:
1 2 

Мухи
Эти миниатюрные создания проявляют удивительную способность ощущать окружающий мир, целенаправленно действовать соответственно обстановке, быстро двигаться, ловко манипулировать своими коне ...

Гомо сапиенс и геном
Гомо сапиенс и геном ...

Птицы. О гусеобразных
Птицы. О гусеобразных К многочисленному отряду гусеобразных, обитающих на всех материках земного шара, относятся утки, гуси, лебеди, казарки, гаги. ...