Использование модели теоретических тарелок для компьютерного прогнозирования характеристик хроматографического разделения

Примечание. П (степень пропитки) = mнжф/ mносителя·100 %.

Во всех случаях применялись насадочные колонки диаметром 0,3 см длиной 200 см (для смесей типа 1-100 см). Объем пробы - 0,002 см3. Условные обозначения в табл.1 традиционны для хроматографического анализа и поэтому приводятся без расшифровки. Пример реальной хроматограммы - на рис.1а.

Компьютерные эксперименты проводили на ПЭВМ IBM PC 386 и 586 в диалоговом режиме. Программа "СHROMAT" написана на языке Turbo Pascal, имеет стандартный пользовательский интерфейс, основанный на использовании функциональных меню и диалоговых окон. Исходными данными для расчета служат: число компонентов смеси (N = 1-5), длина хроматографической колонки в см (L = 1-5000), число теоретических тарелок колонки (ЧТТ = 1-100000), линейная скорость движения подвижной фазы (ПФ) в колонке (, см/мин), фазовое отношение в колонке (). Для каждого из компонентов пользователь вводит значение коэффициента распределения Кp (до 1000), относительное содержание компонента в смеси (%) и коэффициент чувствительности детектора к данному компоненту (Кчувств). В ходе каждого эксперимента вводилось значение ЧТТ, рассчитанное для соответствующей колонки по реальной хроматограмме при вводе отсутствующего в исследуемых смесях чистого вещества, принадлежащего к тому же гомологическому ряду. Справочные значения Кр использовали в случае н-алканов, для других смесей Кр заранее рассчитывали по временам удерживания.

Алгоритмы расчета по модели [1] предполагают следующие допущения:

а) значения Кр постоянны для каждого компонента и не зависят от концентрации (линейная равновесная хроматография при постоянной температуре);

б) для всех компонентов смеси ЧТТ принимается одинаковым;

в) расчет выполняется без учета взаимного вытеснения компонентов, то есть в однокомпонентном приближении.

Протокол компьютерного эксперимента содержит следующие результаты расчета: общее время хроматографирования смеси tобщ; характеристики пиков (абсолютное время удерживания, полуширину и относительную площадь), а также коэффициенты разрешения Кразр рядом стоящих пиков. Протокол и модельная хроматограмма смеси выводятся на экран, сохраняются на диске и могут быть выведены на печать. В протоколе также указываются все введенные пользователем данные. Пример рассчитанной компьютером хроматограммы - на рис.1б. Состав смеси и условия разделения на рис. 1а и 1б аналогичны.

Рис. 1. Хроматограмма смеси н-алканов: а - реальная; б - модельная (смесь 1)

3. Результаты и их обсуждение

Для всех смесей вид реальных и рассчитанных хроматограмм совпадал. По каждой смеси рассчитывали t/t - относительную погрешность предсказания времен удерживания, которая для любого компонента по абсолютной величине не превышала 20 % и, судя по знакам, имела случайный характер. Одновременно оценивалась погрешность предсказания некоторых других характеристик (табл. 2). Средняя величина t/t по каждой смеси (в %) составляла для первой серии (н-алканы на сквалане) - 3.1, для второй (н-алканы на апиезоне) - 7.9, для третьей (пестициды на SE-30) - 11.6 и для четвертой (алкилбензолы на апиезоне) - 11.3. То есть, наблюдалось достаточно хорошее совпадение по временам удерживания, средняя погрешность предсказания во всех исследованных случаях не превышала 12 % отн.

Таблица 2

Сравнение реальных и расчетных параметров удерживания и разделения для алкилбензолов

N

Компонент

Время удерживания, мин.

Kразр

   

расч.

эксп.

|t/t· 100%

расч.

эксп.

|Kразр/Kразр· 100%

1

Толуол

0.46

0.40

15.00

     

2

Этилбензол

0.57

0.60

5.00

3.12

3.67

15.00

3

м-Ксилол

0.60

0.68

12.00

0.78

0.79

1.00

4

о-Ксилол

0.65

0.75

13.00

1.14

1.02

12.00

       

Сред. - 11.30

   

Сред. - 9.30

Перейти на страницу:
1 2 3

Изучение механизма изомеризационной рециклизации методом молекулярной механики
Изучение механизма изомеризационной рециклизации методом молекулярной механики В последние годы круг соединений, способных к рециклизации, расширился за счет производных пиридиниевых сол ...

Оксиды. Кислоты. Основания. Амфотерность. Соли
Оксиды. Кислоты. Основания. Амфотерность. Соли. ...

Химический анализ дождевой воды
Химический анализ дождевой воды Дождевая вода хорошо усваивается организмом и содержит минимальное количество вредных примесей. Она способствует более качественному перевариванию и усвоен ...